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Abstract—This paper presents a solution based on subjective
logic to include ‘second-order uncertainty’ in objective functions
for mission-driven resource allocation. When resources have to be
optimized, one of the requirements is a probabilistic assessment
of future scenarios. However, the end-users who have to convey
such future assessment may not be completely confident about
it. It can therefore be necessary to specify a confidence level
together with this input. With subjective logic it is possible to
describe such second-order uncertainty. We used it to describe
the uncertainty of assessments (e.g. about future threats) and
models (e.g. of sensor systems) within the optimization objective.
As a result, the integrity of the optimization improves, because
excluding important uncertainties from the optimality definition
is not, actually, optimal. In the end, although it is complicated to
incorporate different levels of uncertainty, the resulting analysis
about mission outcomes is more genuine, it creates transparency
towards the end-users, and eventually, results in a resource
allocation solution that takes more aspects into account.

I. INTRODUCTION

A key part of an automatic resource manager is the objec-
tive function [1], [2], [3]. An objective function should be able
to quantify optimality (correctness) of a control solution. As a
result, an objective function allows to compare many solutions
with each other, and select the optimal one. It is obvious
that the definition of such an objective function is crucial to
actually manage resources optimally. However, there is only
little discussion on the definition of objective functions (also
defined as ‘utility’ or ‘cost’) in sensor management literature.

The main reason for the lack of discussion on the defi-
nition of the objective function is the complexity to prove its
correctness. In fact, an objective function would be the method
to judge if a solution is correct. If someone states “optimality
is optimal, because my definition of optimality says so”, then
this is circular reasoning and not convincing. Nevertheless, we
think that there is an approach to define a reasonably accurate
objective function in a convincing and consistent manner. If
this is possible, then a concrete method exist that can quantify
how optimal system solutions are.

An extensive overview of objective functions is given
in [1], [2], [3]. In short, the majority of current objective
functions is based on system/sensing characteristics (e.g. [4],
[5], [6], [7]). The advantage of such objective functions is
that they can be easily linked with the controllable system
parameters. However, the crucial problem with such objectives
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is that normally they are not linked with operational aspects.
Fortunately, the number of studies that start to use objective
functions that are more related to relevant operational aspects
is increasing (e.g. [8], [9], [10], [11]).

The objective functions that are currently the most suc-
cessful in capturing optimality from a mission point of view
are based on probabilistic risk [8], [10], expected-utility [11],
[2] or prospect theory [3]. The approach consists of defining
several assets (e.g. physical objects) that the end-user wants to
obtain or retain. After the threats and opportunities have been
analyzed probabilistically, the related risk, expected-utility or
prospect can be minimized and/or maximized by allocating the
system resources accordingly. This approach is much more
consistent compared with satisfying (fixed) system/sensing
characteristics. However, there are still several short-comings
of such mission-driven objective functions.

The above mentioned mission-driven objective functions
are based on probability measures. Probability is a mathemat-
ical language to describe and quantify uncertainty [12], which
is required for the objective functions to output a real number
(i.e. R). However, not every type of uncertainty is captured
in above functions. For example, let us assume that P (Sz)
is the probability that an asset z is secured. Based on the
end-user’s assessment and system models it is estimated that
P (Sz) = 0.8. Such value is sufficient for a risk, expected-
utility or prospect function to output the optimality of the
control solution. However, how confident are we that this value
0.8 for P (Sz) is correct? When pursuing this question we
identify the ‘uncertainty about probability’ [13], which can
also be called the ‘second-order probability’ about the original
probability [14] or the ‘epistemic uncertainty’ [15]. It could be
the case that the assessment of P (Sz) = 0.8 is actually poor
and we cannot completely rely on it.

This paper investigates the use of subjective logic [14], [16]
in order to include the second-order uncertainty in objective
functions. This approach improves the integrity of the objective
functions, because excluding important uncertainties from the
optimality definition tends to unjustified confidence. For in-
stance, P (Sz) may depend on assessing future events. Future
assessment is a complex process and actual quantification by
end-users of P (Sz) may result in a non-100% confidence that
this value is correctly estimated. By using subjective logic we
developed a solution that allows end-users and modelers to
provide more complete ‘expert opinion(s)’ for enhancing the
optimization process.



The content of this paper is as follows. In Section II
a mission-driven objective function is defined based on the
expected-utility approach. Section III discusses short-comings
of probabilistic-based objective functions. The theory of Sub-
jective Logic as a potential method to overcome these problems
is discussed in Section IV. This theory is employed to assess
second-order uncertainty for future assessment in Section V
and model development in Section VI. Section VII combines
all aspects in order for the objective functions to output a single
real number that indicates optimality. This paper is concluded
in Section VIII.

II. A MISSION-DRIVEN OBJECTIVE FUNCTION

An objective function is required to measure how much a
system contributes to the mission. If P (Sz) is the probability
that a mission-critical asset z is secured when the mission
ends, then the expected mission success is described by the
expected-utility [17], [18]:

UE =

Z∑
z=1

uzP (Sz) (1)

where Z is the number of assets and uz is the utility of asset
z. The utility is determined by the end-user, and the expected-
utility describes the expected value of the assets at the end of
the mission. For example, an assets can be threatened by a
terrorist attack. As can be seen, the requirement of employing
this mission-driven objective is that assets (nuclear plant, very-
important-person, fugitive, etc.) can be defined. In order to
secure the asset(s), it is required that operational tasks [2]
are executed. Because operational tasks are linked with assets,
the probability that an task is successfully executed is directly
related to the mission success expectations:

P (Sz) =
∏

k∈Kz

{
(1− P (Ek) (1− P (Szk|Ek))) if k ∈ Kr

P (Ek)P (Szk|Ek) if k ∈ Ko

(2)

where the set Kz contains all operational tasks that are related
to the asset z, set Kr contains all operational tasks for retaining
an asset, and set Ko contains all operational tasks for (re-
)obtaining an asset that was not in the end-user possession
at the beginning of the mission. Probability P (Ek) is the
likelihood that the threat (if k ∈ Kr) or opportunity (if k ∈ Ko)
specified by operational task k will occur and P (Szk|Ek) is
the probability that the system is able to successfully cope with
it for asset z.

Only probability P (Szk|Ek) can be directly influenced by
the system. Thus, UE can eventually be changed by adapting
the system configuration. The probability that an operational
task k is successfully executed for asset z is calculated by
analyzing many possible scenarios:

P (Szk|Ek) =

Nk∑
n=1

P (Szk|Xkn)P (Xkn|Ek) (3)

where Nk is the number of test scenarios for operational task
k, P (Szk|Xkn) is the probability that the system successfully
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Fig. 1. System Architecture based on Observe Orient Decide Act (OODA).

copes with scenario Xkn, P (Xkn|Ek) is the probability this
scenario will actually occur given that the related threat or
opportunity Ek will occur specified by operational task k.

We assume that the available systems are able to execute
a set of operational tasks (e.g. air-defense, crowd-control) in
the framework of the mission. The Observe, Orient, Decide
and Act (OODA) loop [19] which is depicted in Fig. 1 can
be used to identify which functions should be realized for a
non-zero P (Szk|Xkn). The original OODA loop identifies four
functions for executing missions in general. However, these
functions can again be decomposed. We illustrate this for the
Observe function and re-use the OODA architecture to identify
sub-functions: an ‘information fusion’, ‘sensor management’
and two other sub-functions. Thus, several (sub-)sub-systems
are required to realize a complete successful system from an
operational point of view.

The estimation of P (Szk|Xkn) requires accurate models.
Let us assume that the probability that the full system can cope
with a possible scenario in perspective of asset z is given by:

P (Szk|Xkn) =

Mk∏
m=1

P (Sknm|Xkn) (4)

where P (Sknm|Xkn) is the probability that a system com-
ponent m can deal with scenario Xkn related to operational
task k, and Mk is the number of relevant components for
operational task k. Thus, all relevant components should work
in order to successfully cope with a scenario. The components
can be defined on different levels. For example, on the level of
‘sensors’, ‘effectors’, ‘environment’, etc. Another level is also
possible, for example: ‘radar antenna’, ‘radar processing’, etc.

III. SHORT-COMINGS OF OBJECTIVE FUNCTIONS

The objective function of the previous section has several
strong advantages, such as that it is clearly related to opera-
tional impact. However, these two issues remain:

1) Probabilistic functions are only based on expectations
that are mathematically defined. Thus, undefined pos-
sibilities are not included.

2) It is uncertain how accurate the quantification of
expectations is, and this uncertainty is ignored by
many probabilistic-based approaches.

This paper distinguishes between expected, unexpected and
undefined events. If an event is undefined, then it is yet beyond
our imagination [20], and there is no mention of a P (Ek) at all.
When it is defined, then it is expected or unexpected, namely
0 ≤ P (Ek) ≤ 1. An event is expected instead of unexpected



when P (Ek) becomes higher than a certain threshold. For
instance, unexpected may mean P (Ek) < 0.1. In any case,
both expected and unexpected can be included in the analysis.

Let us consider an example for clarification. A threat is
theoretically well defined, but completely unexpected, thus
P (Ek) = 0. Then operational task k can be excluded from
the analysis (or not). In any case (excluded or not), changing
system performance P (Szk|Ek) does not affect the values for
probability P (Sz) and objective UE . This is a good feature,
because optimizing systems for completely unexpected events
is superfluous from a mission point of view.

An objective function can only include aspects that can be
defined mathematically. However, an event that is undefined
can still happen [21]. To overcome this, it is sometimes sug-
gested to “expect the unexpected”. This triggers to brainstorm
about unusual scenarios. However, note that it could also be
understood as irrational, because “expecting” something that
is still unexpected is likely to be useless. Further, it can also
be argued that it is impossible to “expect the unexpected”,
because if someone considers (i.e. defines mathematically) the
undefined it directly becomes (un)expected. Thus, these type
of discussions demonstrate the need to properly define the
employed terms.

Until now, solely the first issue is discussed, but the second
issue is investigated in the rest of this paper. However, these
two issues may overlap with each other. For instance, consider
the uncertainty of including enough ‘originally undefined’
scenarios in the analysis. In any case, it is useful for a trans-
parent analysis to discuss above issues separately as expressed
by [12]:

“Although uncertainty is uncertainty at a basic level,
clearly some uncertainties are easier to assess than
others. Therefore, it can be useful to think about
certain types of distinctions among uncertainties.”

For both issues there exist several solutions to partly solve
them. For instance, possibility theory [21] is analyzed [22] as
a solution to pay attention to undefined events, namely the
first issue. We investigate the use of subjective logic to partly
overcome the problem that is identified as the second issue.

IV. INTRODUCTION TO SUBJECTIVE LOGIC

This section discusses the theory of Subjective Logic [14]
that is a generic belief reasoning calculus. Because it is a
extension to binary logic and probability calculus, it is also
compatible with them. The key advantage is that the theory
has an extra uncertainty dimension: expert opinions are not
solely based on a single likelihood, but have a ‘second-order
certainty’ for the original likelihood.

In subjective logic, an (binomial) opinion about entity x is
described as:

ωx = {bx;ux; ax} (5)

where bx is the belief mass in support of x being true, ux is the
amount of uncommitted belief mass and uncertainty about x
and ax is the prior probability in the absence of commitment
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Fig. 2. Opinion ωx = {0.2; 0.3; 0.6} plotted within Subjective Logic [14].

and base rate of x. It is defined that the sum of the belief,
disbelief and uncertainty is equal to unity:

bx + dx + ux = 1 (6)

where dx is the disbelief in x. In other words, if parameters
bx and ux are determined, dx is determined. This is the reason
why we omitted disbelief dx in the notation of ωx, but it can
be included [14]. The expected probability value is given by:

E(ωx) = bx + axux (7)

The base rate ax refers to the category probability uncon-
ditioned on evidence, often referred to as prior probability. A
simple example is the following. Assume that 1% of the public
is a ‘police officer’ and 99% of the public is not, then the base
rates in this case are 1% and 99%, respectively. When picking a
random person, the prior probability of being a ‘police officer’
is 1%. However, additional information such as what type
of clothes a person is wearing, at which location the person
currently is, etc. can result in an opinion that the person is
indeed a ‘police officer’ unequal to the 1% probability.

Fig. 2 depicts a triangle to visualize an opinion in Subjec-
tive Logic. Within the triangle there are three axes, namely,
(i) belief, (ii) disbelief, and (iii) uncertainty. Any (binomial)
opinion can be positioned within such a triangle. An example
opinion ωx about entity x is given with the purple point in
Fig. 2. The location of the point visualizes the opinion in
perspective of (dis)belief in x and the uncertainty about this
(dis)belief. The closer the point is located to one of the three
corners, the higher the related parameter is within the opinion.
It is also possible to visualize the calculation of the expected
value of the opinion. Namely, draw a line that is parallel to
the director, which is based on the base rate, from the opinion
location to the bottom.

Several types of opinions are possible. For instance, if ux 6=
0, then it is a (partly) uncertain opinion, but if ux = 0, then
the opinion is dogmatic and it is equivalent to probabilities.
On the other hand, if ux = 1, then the opinion is vacuous.
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Fig. 3. Example opinion that is represented by a Beta function f(x; 3, 5).

If bx = 1, then the opinion is absolute, non-probabilistic and
equivalent to binary ‘true’.

It is also possible to map a binomial opinion ωx to a Beta
probability density function f(x;α, β) as described in [14]. In
this case the parameters of f(x;α, β) are given as follows:

α =
Wbx
ux

(8)

β =
Wdx
ux

(9)

where W is the prior weight and normally defined as W = 2
as explained in [14]. An example of the beta function f(x;α =
3, β = 5) for a ωx = {0.3; 0.2; ax} is given in Fig. 3.

To conclude, the subjective logic theory provides a frame-
work to describe expert opinions and different degrees of
uncertainty. Moreover, it is compatible with binary logic and
probabilistic theory. Potentially the term ‘uncertainty’ can be
replaced with the term ‘confidence’ as it is done in [15] to
avoid potential confusion. Another advantage of the framework
is that it provides consistent operators for opinions, which are
used in the next sections.

V. UNCERTAINTY DURING FUTURE ASSESSMENT

The mission-driven objective function (1) of Section II
is based on the expected-utility function. This means that
the mission utility, that pertains to the future, is not directly
optimized, which is impossible in a non-deterministic universe.
However, the mission utility expectations are optimized, and
by doing this, a better chance for mission success is obtained.
Of course, this optimization relies on probabilities P (Ek).
Therefore, the correctness of probabilities P (Ek) is crucial
to actually maximize changes for mission success.

Future assessment determines which threats and opportu-
nities become real in the future and quantify their likelihood.
Thus, future assessment outputs P (Ek). The actual assessment
of future events is in practice complicated. Moreover, “there
can be no experimental verification of its validity” [15]
- or it can be done once, but then it is already too late.
A remaining possibility is to use several inputs for future

assessment, because this can enhance the confidence that the
final assessment is correct [12]:

“Since we generally believe, and empirical evidence
supports, the notion that several heads are better than
one, we often have information (e.g., probabilities,
estimates) from a number of experts regarding the
same events or variables.”

Thus, let us assume that several experts provide their opin-
ion about future events. The combination of several opinions
into one statement is one of the possibilities in Subjective
Logic [16] and the benefit is expressed similar as above:

“In case of multiple belief sources it is assumed
that each source represents partial evidence about
the correct statement, so [. . . ] fused belief from
multiple sources provides stronger support for the
correct statement [. . . ] than [. . . ] by beliefs from
single sources alone.”

Assume that person A is assessing the future and outputs
ωA(Ek) by positioning his opinion within the triangle as in
Fig. 2. The resulting expert opinions is described as follows:

ωA(Ek) =
{
bA(Ek);u

A(Ek); a
A(Ek)

}
(10)

where bA(Ek) is the belief in Ek by person A, uA(Ek) is
the confidence of person A and a(Ek) is the assessed prior
probability provided. Parameter a(Ek) can, for example, be
assumed equal over all the experts after a joint historical anal-
ysis (e.g. statistical occurrence of such threats or opportunities
during previous similar missions).

There are two methods in subjective logic to fuse opin-
ions [23]: cumulative fusion and averaging fusion. For future
assessment, first the ‘dependent opinions’ are fused with
averaging and the remaining ‘independent opinions’ are fused
cumulatively. Opinions are dependent, for instance, when
expert opinions are all based on reading social media messages.
Independent opinions exist, for instance, when one expert’s
opinion is based on social media messages and another one is
based on field reports (e.g. infiltrated spies).

A. Averaging fusion

The evidence, that opinions rely on, are assumed dependent
during averaging fusion. Given two dependent opinions ωA

and ωB , the opinion after averaging fusion is given by:

ωA�B(Ek) =
{
bA�B(Ek);u

A�B(Ek); a(Ek)
}

(11)

where symbol � expresses the fusion of two observers into a
single imaginary observer. Thus, if the observers are A and
B, then the imaginary observer is denoted as A�B. When at
least one of the persons is not 100% certain, then the resulting
opinion is given by [23]:

bA�B =
bAuB + bBuA

uA + uB
(12)



uA�B =
2uAuB

uA + uB
(13)

when each person is 100% certain and the opinions are not
identical, then there is a conflict and the result is calculated
differently [23]. The averaging fusion rule is commutative and
idempotent, but not associative. Idempotent means that a belief
argument fused with itself should always produce the same
belief argument.

The non-associative characteristic of this fusion operator
can be problematic in our type of problems. For instance, if
there are three opinions, which sequence should be used to
fuse the opinions? However, it is also debatable that averaging
fusion is needed in practice, because when several experts
are generating an opinion based on the same evidence, then
probably they can also formulate together a single opinion as
a group.

B. Cumulative fusion

For cumulative fusion it is assumed that the evidence,
that opinions rely on, is independent. Let us assume two
independent opinions ωA and ωB , then the cumulative fused
opinion is described as:

ωA�B(Ek) =
{
bA�B(Ek);u

A�B(Ek); a(Ek)
}

(14)

where symbol � denotes the fusion of two observers into a
single imaginary observer. When the two observers are A and
B, then the imaginary observer is expressed as A � B. If at
least one of the persons is not 100% certain about his/her
assessment, then the resulting opinion is given by [23]:

bA�B =
bAuB + bBuA

uA + uB − uAuB
(15)

uA�B =
uAuB

uA + uB − uAuB
(16)

when each person is 100% certain and the opinions are not
identical, then there is a conflict and another set of equations is
given in [23]. The cumulative fusion operator is commutative,
associative and non-idempotent. The non-idempotent means
that a partially uncertain belief argument fused with itself
should produce a fusion result with less uncertainty. Therefore,
opinions that rely on the same evidence should not be fused
cumulatively.

VI. UNCERTAINTY DURING MODEL DEVELOPMENT

When a threat or opportunity is actually occurring during
the mission, the system should be able to deal with it. The
successful handling can depend on many system components
as discussed in Section II. For instance, the detection of objects
may depend on radar systems. When considering a radar,
the exact estimation of the (cumulative) detection probability
depends on many aspects (e.g. antenna characteristics, prop-
agation loss in the environment) that have to be incorporated
in the model. In the end, the model is a representation of

the reality and there is practically always a mismatch. Thus,
a certain level of confidence exist at the modeler that the
calculated system performance is accurate, as stated in [15]:

“Since any model is an approximate representation,
it follows that there must be some (epistemic) un-
certainty associated with the formulation, and pre-
dictions, of the model.”

This model uncertainty is again a second order uncertainty
which should be considered during system optimization. As
discussed in [12]:

“When we are uncertain about a model, then as-
sessments of probability distributions for the model
parameters can be made conditional upon the model
being appropriate, and model uncertainty can be
treated separately.”

A model has to be developed for each system component m
and for each model m three components have to be provided.
Firstly, belief b(Sknm|Xkn) which should be linked to the
model output (e.g. the probability that a threatening object will
be detected-in-time by a sensor). Secondly, the modeler, who
developed the model, should quantify its confidence (or trust)
in the model: uncertainty u(Sknm|Xkn). It is possible that the
modeler only has to provide one value Um for all scenarios,
thus ∀m : u(Sknm|Xkn) = Um. Thirdly, the base rate
a(Sknm|Xkn) which is challenging to estimate. A possibility
is an extensive measurement campaign that includes real-life
self-constructed scenarios for testing. After such measurement
campaign it can be expected that the model is improved by
the modeler and simultaneously that the modeler’s confidence
level is changing. In any case, the opinion that system m is
able to cope with scenario n of operational task k is given by:

ω(Sknm|Xkn) = {b(Sknm|Xkn);u(Sknm|Xkn);

a(Sknm|Xkn)} (17)

All the modeler opinions ω(Sknm|Xkn) have to be com-
bined into a single ω(Szk|Xkn). In this paper, the final perfor-
mance is given by the multiplication of the individual system
component performances as described by (4). In this case, the
required operator is the (binomial) multiplication [24].

A. Normal Binomial Multiplication

In subjective logic, the symbols ∧ and · are used to denote
the multiplication of opinions: ωx∧y = ωx ·ωy . The parameters
of ωx∧y are given by:

bx∧y = bxby +
(1− ax)aybxuy + ax(1− ay)uxby

1− axay
(18)

ux∧y = uxuy +
(1− ay)bxuy + (1− ax)uxby

1− axay
(19)

ax∧y = axay (20)



The multiplication operators are commutative and asso-
ciative. When the opinions contain degrees of uncertainty,
the multiplication operators will produce opinions that have
a correct expectation value but possibly with approximate
variance for Beta probability distributions [14].

VII. INTEGRATING EXTRA LEVEL OF UNCERTAINTY

In Sections V and VI, ω(Ek) and ω(Szk|Xkn) have been
derived. The remaining task is to integrate them in the objective
function, that should still output a single R value in order to
unambiguously select the optimal system configuration.

The opinion that task k is successfully executed given an
attack is defined based on (3) as follows:

ω(Szk|Ek) =

Xk∑
x=1

ω(Szk|Xkn)P (Xkn|Ek) (21)

In the above case, P (Xkn|Ek) is not replaced with a
ω(Xkn|Ek), which may include some second-order uncer-
tainty. Of course, both solutions are possible, because Subjec-
tive Logic is compatible with the original probabilistic logic.

The addition of two opinions ωx∪y = ωx + ωy is defined
as follows [14]:

bx∪y = bx + by (22)

ux∪y =
axux + ayuy
ax + ay

(23)

ax∪y = ax + ay (24)

Based on (2) the opinion that an asset z is secured is
defined as follows:

ω(Sz) =
∏

k∈Kz

{
¬ (ω(Ek)(¬ω(Szk|Ek))) if k ∈ Kr

ω(Ek)ω(Szk|Ek)) if k ∈ Ko

(25)

where ¬ is the subjective logic complement notation and
simply defined as:

b¬x = dx (26)

u¬x = ux (27)

a¬x = 1− ax (28)

As a result, an opinion ω(Sz) = {b(Sz);u(Sz); a(Sz)}
exists for each asset. Finally, it is proposed to maximize the
following ’subjective-expected-utility’:

s(UE) =

Z∑
z=1

uzE (ω(Sz)) (29)

s(UE) =

Z∑
z=1

uzb(Sz) +

Z∑
z=1

uza(Sz)u(Sz) (30)

where function E(ωx) is the expected probability value of
opinion ωx as defined in (7).

The resulting objective function includes the second-order
uncertainty. It has transformed the final opinions to expected
values in order to compute a single value that can express the
optimality of system solutions. An advantage of the presented
approach is that also the total uncertainty about the mission
outcome estimation can be provided back to the end-user:

u(UE) =

Z∑
z=1

uzu(Sz) (31)

Value u(UE) can be used to indicate how uncertain the
optimization process is about s(UE). If there exist no model
uncertainties or the binomial multiplication, which uses bx
and by to determine ux∧y , is not required for combining
the model uncertainties, then u(UE) is independent on the
selected system configuration. In this case, the uncertainty of
the mission outcome u(UE) only depends on the uncertainty
of the future assessment, and thus, u(UE) cannot be changed
by the system.

Potentially, the subjective logic based approach can be
combined with a prospect theory based resource allocation
approach [3]. In this case, the objective function is given by:

s(UP ) =

Z∑
z=1

v(uz)w (E(Sz)) (32)

where function v(.) translates the utilities into ‘subjective’ val-
ues and function w(.) translates probabilities into weights. In
this way the ‘subjective-prospect’ objective can be maximized.
The uncertainty in the prospect is calculated in a similar way:

u(UP ) =

Z∑
z=1

v(uz)u(Sz) (33)

This concludes the incorporation of the second-order un-
certainty of future assessment and model development in the
optimization objective for mission-driven resource allocation.

VIII. CONCLUSION

The mission-driven objective function are enhanced by in-
corporating the uncertainty of future events and model outputs.
The key obtained advantage is that resource allocation can
now take into account these types of uncertainties during its
optimization, and moreover, output its uncertainty of its opti-
mality of the provided configuration. We expect that end-users
will appreciate the extra uncertainty dimension for conveying



their future assessment, and allowing modelers to express
their confidence. On the other hand, we should be aware that
there is a possibility that end-users become confused, because
probability theory is used to parametrize and quantify both
types of uncertainty, but as expressed in [15]:

“it is important to distinguish between the two, not
only because it can impact the answer being given
to a decision maker, and hence have an impact on
the decision outcomes”

It is clear that in the above quote the term ‘decision
maker’ can be replaced with ‘automatic resource allocator’.
To conclude, although it is more complicated to incorporate
different levels of uncertainty, the resulting analysis about
mission outcomes is more genuine, it creates transparency
towards the end-users, and eventually, results in a system
configuration solution that takes more aspects into account.
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